US008010576B2

a2 United States Patent 10) Patent No.: US 8,010,576 B2
Nilva (45) Date of Patent: Aug. 30,2011
(54) INVENTORY AND CONFIGURATION 6,122,639 A * 9/2000 Babuetal. 707/103 R
MANAGEMENT 6,173,289 B1* 1/2001 Sonderegger etal. ... 707/103 R
6,226,788 B1* 5/2001 Schoening etal. 717/107
. . 6,226,792 B1* 5/2001 Goiffonetal. 717/120
(75) Inventor: Leonid Nilva, San Jose, CA (US) 6427230 BL* 7/2002 Goiffon et al. . . 717/108
. 6,633,878 BI1* 10/2003 Underwood 707/100
(73) Assignee: Oracle International Corporation, 6,856,985 Bl * 2/2005 Pierce et al. .. 7071
Redwood Shores, CA (US) 7,185,075 B1* 2/2007 Mishraetal. 709/223
7,418,700 B2* 8/2008 Zimniewicz et al. .. 717175
N I : I : 2002/0029256 Al* 3/2002 Zinteletal. 709/218
(*) Notice: Subject to any (gsglalmeé’. the Iiermgfﬂ;; 2002/0035621 Al* 3/2002 Zintel etal. 709/220
patent 1s extended or adjusted under 2002/0042687 Al* 4/2002 Tracy et al. 702/119
U.S.C. 154(b) by 0 days. 2003/0172368 Al* 9/2003 Alumbaugh et al. .. 717/106
2003/0195957 Al* 10/2003 Banginwar 709/223
(21) Appl. No.: 11/121,859 (Continued)
(22) Filed: May 3,2005 OTHER PUBLICATIONS
(65) Prior Publication Data “What’s New in Microsoft Systems Management Server 2.0” Feb. 8,
US 2006/0041567 A1 Feb. 23, 2006 1999. <http://web.archive.org/web/20010416003324/www.
microsoft.com/smsmgmt/exec/whatsnew.asp>.*
Related U.S. Application Data (Continued)
(60) Provisional application No. 60/603,465, filed on Aug.
19, 2004. Primary Examiner — Pierre M Vital
Assistant Examiner — Christopher P Nofal
(51) Int.ClL (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
GOG6F 7/00 (2006.01) Stockton LLP
GOG6F 9/44 (2006.01)
(52) USeCl oo, 707/804; 717/169 (57) ABSTRACT
(58) Field of Classification Search 707/1, 4, A schema is provided that describes specific executables and
707/10, 104, 103 R; 715/513; 717/107, parameters. Relationships between the executables and
717/108, 126, 136, 143, 176; 709/201, 203, parameters are also defined. The schema is provided to rep-
709/206, 219, 225, 228, 229, 231, 236 resent SCM and IM tasks uniformly. Information regarding a
See application file for complete search history. specific component is represented by the schema. The schema
may then be used to describe metadata for specific compo-
(56) References Cited nents. For example, the schema provides information for

U.S. PATENT DOCUMENTS

5,499,371 A * 3/1996 Henninger etal. 717/108
5,692,129 A * 11/1997 Sondereggeretal. 707/103 R
5,715373 A * 2/1998 Desgrousilliers et al. 706/47
5717911 A * 2/1998 Madridetal.ccco..... 707/2
5,734,907 A * 3/1998 Jarossay etal. 717/141
5,859,978 A * 1/1999 Sonderegger et al. 709/226
5,926,810 A * 7/1999 Nobleetal.cecerrnnin. 707/4

Description
schema

208
Aggregate
description

components such as how the component is comprised (its
parts), its relationship to other components (i.e., dependen-
cies), its parameters, the parameters’ constraints and depen-
dencies, etc. This provides a universal framework that is
independent of specific component and can be used for SCM
as well as for IM.

21 Claims, 7 Drawing Sheets

'/— 200

204
Instance -

schema

210

Inventory control
and configuration
management modul

/208

instance
le

Task

N\ 108-1 \ 1062

US 8,010,576 B2

Page 2
U.S. PATENT DOCUMENTS 2006/0259634 Al1* 11/2006 Hoodetal. ... 709/230
N -

2004/0019664 AL* 12004 Leetal. ... 709/220 2006/0277249 Al* 12/2006 Yassinetal. 709/203
2004/0054933 Al* 3/2004 Wongetal. . . 713/202 OTHER PUBLICATIONS
2004/0093593 Al* 5/2004 Jhanwar et al . 717/169
2004/0107183 Al* 6/2004 Mangancocooveenne. 7072 “SMS 2.0 SDK Documentation” Feb. 1999. <http://msdn2.
2004/0163041 A1* 8/2004 Engel 715/509 microsoft.com/en-us/library/ms8 15308 .aspx>.*
2004/0210607 Al* 10/2004 Manchanda et al. . 707/203 “XML” Feb. 20, 2006, p. 1-3. <http://web.archive.org/web/
2004/0260800 AL* 12/2004 Guetal. ...cocoovvvnrnnnn. 709/223 200602202 10330/http://en. wikipedia.org/wiki/Xml> *
2006/0010232 Al* 1/2006 Pageetal. ..o 709/223
2006/0200494 Al* 9/2006 Sparks ... 707/104.1 * cited by examiner

U.S. Patent Aug. 30, 2011 Sheet 1 of 7 US 8,010,576 B2

102
Aggregate a

schema
104-1 104-2 l 104-3
L/ 0 v /
Metadata Metadata Metadata

1/106—1 1/106'2 vL/106—3

SW HW SW/HW
component component component

FIG. 1

U.S. Patent

schema

Y

Description

Aug. 30, 2011 Sheet 2 of 7

202

Aggregate
description

/210

Inventory control

US 8,010,576 B2

'/— 200

L~ 204

Instance
schema

h 4

Aggregate

and configuration
management module

Task

instance

FIG. 2

S 106-3

U.S. Patent Aug. 30, 2011 Sheet 3 of 7 US 8,010,576 B2

~ 206-1
Aggregate Description
304-1
302 /'
- Parameter
#1
Executable Yl 304-2
[|| Parameter
#2
v ~ 206-2 ~ 208-2
Description Instance _
/'302 304-1 302 /-304 1
I—— Port I—- PortY
Server 304-2 " | serverx 304-2
functionality _ erver oV
—I— Host _-I— Host Z
l s 208-1
Instance 304-1 /’ 210
302
PortB
ICCM
Server A { 304-2
Host C
Action
V210 y 1062
ICCM Server X
l P 106-1
Server A

FIiG. 3

U.S. Patent Aug. 30, 2011 Sheet 4 of 7 US 8,010,576 B2
4 410)
402
. Simplest
. Simplest
Executable Simplest{ Aggregate AggErFZ%ate
Aggregate E[1)
E[0]
Simplest Aggregate Simplest Array Aggregate
404 412
Simplest . Simple
Aggregate Simple ilm;r)ée ate Aggregate
c Aggregate L%g 9 L[2]
L[O] []
— d
Simple Array Aggregate
/408
(Simplest Array \
Aggregate R

Complex
Complex | aggregate
Aggregate 2]

Complex
Aggregate | [1]
10]

Array Aggregate

Simplest
Aggregate S

Aggregate U

Array Aggregate V Complex

Aggregate W

o

Complex Aggregate /

FIG. 4

U.S. Patent Aug. 30, 2011 Sheet 5 of 7 US 8,010,576 B2

404

/—
e)
Aggregate X

(N\
Simplest Aggregate A / 502 Simplest Aggregate B / 504

506—, 510) Constraint () ’@fﬁ“ ~—508)

Constraint (=) /‘Q6)
svrHost ClientServer
R V

Server

FIG. 5

U.S. Patent Aug. 30, 2011 Sheet 6 of 7 US 8,010,576 B2

4 N
Simplest Aggregate A Simplest Aggregate B
(Server) / 502 504\ (ClientServer)
Parameters Parameters
myHost aHost
myPort aPort
srvHost
srvPort
'/—\ '/_\
~__ ~_ A
| —404
Aggregate X
Parameters
Host (virtual)
Port (virtual)
Dependencies
Host := B.myHost
> Port := B.aPort <
Constraints 604
A.myHost = B.aHost 602
A.myPort = B.srvPort /
A.myHost = B.srvHost
. J

FIG. 6

U.S.

Patent Aug. 30,2011

/’ 706

Sheet 7 of 7

US 8,010,576 B2

r— 700

720

[

708
N

Storage Subsystem

Memory Subsystem

’P— ROM RAM

Subsystem

/
718—"

Bus Subsystem

710

File Storage | | /

712
\

User Interface
Input Devices

1L

10
704/ ﬁ

1l

11

7 Og- Processor(s)

716

/— Network Interface

{}

User Interface
Output Devices | N\
714

Communication networks,
computers, storage

FIG.7

US 8,010,576 B2

1
INVENTORY AND CONFIGURATION
MANAGEMENT

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims priority from co-pending U.S. Pro-
visional Patent Application No. 60/603,465 filed Aug. 19,
2004 entitled INVENTORY AND CONFIGURATION
MANAGEMENT which is hereby incorporated by reference,
as if set forth in full in this document, for all purposes.

BACKGROUND OF THE INVENTION

The present invention generally relates to inventory control
and configuration management and more specifically to tech-
niques for using a schema to describe metadata for inventory
control and software configuration management tasks.

Software configuration management (SCM) is tradition-
ally understood as an activity that relates to provisioning
software components (i.e., programs, applications) onto
appropriate operational environments (such as a particular
operating system situated on a particular hardware compo-
nent) and to setting attributes (e.g., parameters) to ensure
proper functioning of the software components in the envi-
ronments. There are many different ways to express attributes
for provisioning various software components and to specify
how to set the attributes. Each product may express its own
attributes differently, which causes great difficulties in uni-
formly addressing software configuration management for
combinations of products.

Inventory management (IM) is traditionally understood as
maintaining a life cycle of components, which includes such
tasks as knowing what is available for provisioning, what is
being provisioned, and where it is provisioned. In addition to
component life cycle management, IM also includes the
maintenance of hardware, for example which hardware items
(network cards, hard drives, CPUs, memory, etc.) are avail-
able, how they are assembled into blocks or blades, how they
are connected network-wise, etc. IM typically includes its
own way of expressing attributes for the provisioned soft-
ware/hardware.

Accordingly, software configuration management and IM
tasks do not deal with common metadata. For example, dif-
ferent products use different metadata for performing soft-
ware configuration management and inventory management
tasks. Accordingly, it is difficult to address SCM and IM tasks
despite the fact that they have overlapping domains.

BRIEF SUMMARY OF THE INVENTION

The present invention generally relates to providing a uni-
fied method of describing metadata for software configura-
tion management (SCM) and inventory management (IM)
tasks. A schema is provided that describes a way to describe
specific executables and parameters. Relationships between
the executables and parameters are also defined. The schema
is provided to represent SCM and IM tasks uniformly. Infor-
mation regarding a specific component is represented by the
schema. The schema may then be used to describe metadata
for specific components. For example, the schema provides
information for components such as how the component is
comprised (its parts), its relationship to other components
(i.e., dependencies), its parameters, the parameters’ con-
straints and dependencies, etc. This provides a universal
framework that is independent of specific components and
can be used for SCM as well as for IM.

20

25

30

35

40

45

50

55

60

65

2

In one embodiment, a schema for a model of metadata for
inventory control and configuration management is provided.
The schema comprises: a description describing an inventory
control and configuration management task for a component,
wherein the description includes an executable and one or
more parameters for the executable, wherein the component
models a functionality of the executable, wherein an instance
is created using the description, wherein the instance in
includes one or more values for parameters in the one or more
parameters of the description, wherein the description models
metadata for the functionality of the component.

Inanother embodiment, a method for inventory control and
configuration management using a schema is provided. The
method comprises: providing a description schema config-
ured to be used to describe inventory control and configura-
tion management tasks, the schema modeling metadata for a
plurality of components, wherein metadata for a first compo-
nent is different from metadata for a second component;
receiving a description describing an inventory control and
configuration management task; and performing the task
using the description, wherein the description allows the task
to be performed with metadata for models of components.

In yet another embodiment, a method for providing inven-
tory control and configuration management is provided. The
method comprises: receiving a description describing an
executable and one or more parameters for the executable, the
executable describing an inventory control and configuration
management task for a component and the one or more
parameters being parameters needed to perform the task;
determining one or more values for the one or more param-
eters; and performing the task for the executable using the one
or more parameters.

A further understanding of the nature and the advantages of
the inventions disclosed herein may be realized by reference
of'the remaining portions of the specification and the attached
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a relationship between software and hard-
ware components, their metadata, and an aggregate schema
according to one embodiment of the present invention.

FIG. 2 depicts a system that uses aggregate schema accord-
ing to one embodiment of the present invention.

FIG. 3 shows an example of an aggregate description and
aggregate instances according to one embodiment of the
present invention.

FIG. 4 depicts different types of aggregates are shown
according to one embodiment of the present invention.

FIG. 5 depicts a simple aggregate and its parameters
according to one embodiment of the present invention.

FIG. 6 discloses parameter constraints according to one
embodiment of the present invention.

FIG. 7 is a simplified block diagram of a computer system
according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 depicts a relationship between software and hard-
ware components, their metadata, and an aggregate schema
according to one embodiment of the present invention. As
shown, an aggregate schema 102, metadata 104, and compo-
nents 106 are provided.

Components 106 may be a software component, hardware
component, or a combination of a software/hardware compo-
nent. Software components may be any software, such as
programs, applications, etc. Hardware components may be

US 8,010,576 B2

3

any hardware, such as computers, storage devices, etc. The
combination of a software/hardware component may be a
software application that is installed on a computer.

Each component 106 may be a certain product. In order for
the product to be used, tasks are performed. For example,
software configuration management (SCM) and inventory
management (IM) tasks are performed using a component
106. For example, a software component 106-1 may be pro-
visioned on a hardware component 106-2. After provisioning,
other tasks may be performed such as the maintenance of
hardware, maintenance of software, etc. In order to perform
these tasks, certain information is needed, such as how to set
certain parameters to ensure the proper functioning of com-
ponents 106. The parameters provide what is needed in order
to perform the SCM or IM task.

The parameters and actions that need to be performed
using the parameters may be expressed in metadata 104. In
one embodiment, each component 106 includes its own meta-
data 104. This metadata may be different among different
components.

Metadata 104 describes how a component 106 is specifi-
cally configured for a particular task. Conventionally, various
metadata 104 was not compatible and uniform. Thus, it was
difficult to perform tasks using different components 106.

Aggregate schema 102 provides a schema that is used to
describe metadata 104 for all components 106. In one
embodiment, schema 102 is an XML (extensible markup
language) schema. Schema 102 provides a uniform way of
expressing tasks for metadata 104. For example, aggregate
schema 102 allows the definition of information regarding a
specific component, such as how it is comprised (its parts), its
relationship to other components (i.e., dependencies), its
parameters, the parameters’ constraints and dependencies,
etc. Thus, the possible actions and parameters for a compo-
nent 106 are provided in a uniform manner that can be used
with metadata 104 for other components 106. Thus, if a task
for software component 106-1 involves a hardware compo-
nent 106-2, an aggregate schema 102 may be used to express
the task and parameters needed. The aggregate schema 102
may thus be considered metadata for metadata 104.

FIG. 2 depicts a system 200 that uses aggregate schema 102
according to one embodiment of the present invention.
Aggregate schema 102 may be broken into a description
schema 202 and an instance schema 204. Description schema
202 is governs aggregate descriptions 206. Description
schema 202 describes a form that can be used to describe all
descriptions 206.

An aggregate description 206 describes executables and
parameters for acomponent 106. The description is generated
based on description schema 202. Aggregate descriptions 206
include textual descriptions of an executable and its param-
eters 304.

An executable may be considered a self-sufficient program
that can be executed. For example, an executable, when run,
performs an action. Executables are represented as aggregate
descriptions 206 that define their parameters, actions, and
operations. Executables may be understood to be runnable
software components, which can be provisioned, configured,
reconfigured, patched, upgraded, etc.

An executable may include bits, actions, operations, and
compositions. Bits relate to pieces of code in associated files
that may be needed for filling the functionality of the execut-
able. Parameters may describe where the bits come from
(some code or process), actions may describe how the bits are
combined (on the fly summary of executables, i.e., linking),
the platform, version, and patch level, and other features.

20

25

30

35

40

45

50

55

60

65

4

Executables may include actions, which may include
instructions on how to install, de-install, configure, and do
other things with the executable. If the functionality of the
executable exists in a variety of phases, actions can carry the
functionality of executable 302 from one phase to another.

Executables may also include operations, which include
instructions on how to create and/or modify the composition
of'the functionality of executable 302. For example, an opera-
tion may describe how to add a node to a cluster.

The parameters may be any parameters that are needed to
be set in order for the executable to run. The parameters 304
in a description 206 do not include values assigned to them.
These values are contained in an aggregate instance 208. For
example, parameters may be configuration parameters. The
parameters may include attributes, plug-ins, and actions. An
attribute may be a parameter that is associated with a compo-
nent 106. Plug-ins may be a plug-in that is needed for com-
ponent 106. Actions may be an executable is something that
could be done with that executable to control it and/or to
modify its behavior. For example, an action may be “perform
patch”, “do upgrade”, “start me”, “stop me”, “clone me”.

A parameter may be represented by a triplet <name, data
type, datum>. With respect to an aggregate description 206, a
parameter may be represented as <name, data type> and an
aggregate instance 208 as <name, datum>. The name is the
same for both a description 206 and an instance 208, but the
data type is provided in the description 206 and the actual
value is provided in the instance 208.

Different types of parameters may be provided. For
example, simplest, simple and array parameters may be pro-
vided. Other types of parameters will also be appreciated by
a person skilled in the art.

A simplest parameter may be a parameter with a data type
that is one of a certain number of basic types (string, numeric,
Boolean, etc.), and pre-defined data types, such as a file or a
custom type such as a Java class name.

A simple parameter may be a parameter which includes a
data type that is an ordered list of a number of named simplest
parameters. For example, a simple parameter may include a
sequence of a number of simplest parameters of different data
types.

An array parameter may be a parameter that includes a
plurality of the same simplest parameters. All members of the
plurality of simplest parameters have the same data types.

A user can decide to perform a task using an inventory
control and configuration management module 210. When
performing the task, values for the parameters may be deter-
mined for an aggregate description 206. These values may be
represented in an aggregate instance 208.

An aggregate instance 208 provides the state of the execut-
able. For example, the aggregate instance 208 provides the
values for the parameters in addition to the result of the
executable action when it is performed. Accordingly, when an
executable action is performed, the result of the action may be
stored in aggregate instance 208. Additionally, other informa-
tion may be stored in aggregate instance 208, such as a time
stamp. The time stamp may include a time in which the
aggregate description 206 was processed to modify its param-
eters or to perform its actions.

The form of aggregate instance 208 may be governed by an
instance schema 204. The instance schema 204 describes a
form that can be used to describe all instances 208 for various
components 106.

When ICCM 210 receives an aggregate description 206 for
a task, parameter values for the task are determined. The
parameter values are then used to perform the action on a
component 106. The parameters and action describe the task

US 8,010,576 B2

5

that is needed and allow the task to be performed on compo-
nent 106. For example, a server functionality may be pro-
vided for a hardware component 106 using an aggregate
description 206 for a server executable.

FIG. 3 shows an example of an aggregate description 206
and aggregate instances 208-1 and 208-2 according to one
embodiment of the present invention. As shown, an aggregate
description 206-1 includes an executable 302 and a first
parameter 304-1 and a second parameter 304-2. Executable
302 may have an action that should be performed by ICCM
210. The action may correspond to a SCM or IM task. For
example, the executable, when running, may provide a server
functionality of a server component 106.

Parameters 304 describe parameters that are needed in
order execute a function, i.e., to do what it is designed to do.
For example, parameter 304-1 may be a port name and param-
eter 304-2 may be a host name. The port name and host name
may be required to provide the server functionality for a
component 106 for the port and host. The executable 302 and
parameter 304 are shown in description 206-2.

Various tasks may be performed with a component 106
using description 206. The executable delivering the server
functionality for description 206 may be implemented on a
component 106. As shown in aggregate instance 208-1, the
functionality for a server A is enabled when the parameters
port B and host C are provided. The executable is run using
the parameters port B and host C by ICCM 210 in order to
perform a task on a component 106. By performing the task,
component 106 may be provisioned as a server A with the
host enabled system as host C and an available port of a
system as port B.

Additionally, description 206 may be used to perform a
task for another component 106-2. As shown in instance
208-2, the functionality of a server X with parameters 304 of
aportY and a host Z are provided. ICCM 210 then performs
the executable on component 106-2 in order to provide the
functionality of a server X with a host name of Z and an
available port of Y. Thus, the same aggregate description 206
may be used to provision a component 106 in different ways.

In one example, the executable may cause a software com-
ponent 106 that is installed on a hardware device to function
as a server, if the host name of the server on which the
software component 106 is installed is equal to the host name
of'the server and the port is assigned to an available port of the
server.

The aggregate 206 described in FIG. 3 may be referred as
a simplest aggregate. A simplest aggregate includes one
executable 302 and any number of parameters 304. It should
be understood that other aggregates may be contemplated.
Forexample, as shown in FIG. 4, different types of aggregates
are shown according to one embodiment of the present inven-
tion.

As shown, a simplest aggregate 206-1 is provided. A sim-
plest aggregate includes one executable in any number of
parameters 304 (not shown). A simplest aggregate may be
combined with other simplest aggregates to form a simple
aggregate 404. An array aggregate may include a number of
aggregates that are the same aggregates. For example, a sim-
plest aggregate may form a simplest array aggregate where a
simplest array aggregate 410 includes a plurality of the same
simplest aggregates 402. Also, a simple array aggregate 412
includes a plurality of simple aggregates 404 that are the
same. A complex aggregate 408 may include an aggregate
that includes different aggregates of different types. Accord-
ingly, aggregates may be combined in order to form various
types of aggregates.

20

25

30

35

40

45

50

55

60

65

6

The above aggregates may be used to reflect ways compo-
nents are composed of other components. For instance, a
client-server component including a server component and a
client component may be represented by a simple aggregate
that includes two simple aggregates. Another example is a
notion of a cluster (a plurality of the same components),
which may be represented by a simple array aggregates
including a number of simple components of the same type.

FIG. 5 depicts a simple aggregate and its parameters
according to one embodiment of the present invention. As
shown, a simplest aggregate A 502 and a simplest aggregate B
504 are provided in simple aggregate 404. Simple aggregate
404 may provide a server and a client/server functionality if
the parameters are configured according to certain con-
straints.

Constraints are placed on certain parameters such that if
they are met, the executables associated with the parameters
can deliver its functionality, that is, the server component to
act as a server, provided that host and port parameters are set
to specific values. As shown in FIG. 5, a server functionality
506 and a client/server functionality 508 are provided. A
parameter 510 and a parameter 512 are provided for simplest
aggregate A 502 and parameters 514, 516, 518, and 520 are
provided for simplest aggregate B 504.

The server and client/server functionality can be imple-
mented if the constraints for the parameters are met. For
example, myHost parameter 512 is constrained with svrHost
parameter 516. This constraint may be that a server function-
ality host component for simplest aggregate A 502 should be
set to the same client/server host on the same system as the
system for simplest aggregate B 504. Also, myHost param-
eter 512 should be equal to the aHost parameter 518. This
constraint may be that the host name of the system should be
equal to the myHost parameter 512 and the aHost parameter
518. Another constraint for the myPort parameter 510 and the
svrPort parameter 514 is imposed. This constraint may be that
a port of the server should be equal to the port of the client/
server part of the system.

In one example, a Server is a weather engine, and when
passed a ZIP code, it returns current temperature. A Client-
Server is acting as a front end to the Server, that is it takes a
user input (ZIP), passes it to the Server, gets temperature from
the Server and then passes temperature to the user. For this to
work, the Server should be running on a known host identified
by a hostname and on a specific port of that host identified by
a port number. Also, the ClientServer should know the host
and port of the Server, so it can communicate with the Server.
Lastly, the user should know host and port of the ClientServer.
The user prospective of a combination of the ClientServer and
the Server constitutes a weather system and as such is having
user accessible host and port. In order to implement the above
system, the constraints that need to be satisfied in order for the
weather system to deliver its functionality to users should be
defined. The Server functionality is determined by values of
its myHost and myPort parameters and the functionality of
the ClientServer is determined by its srvHost, srvPort, aHost
and aPort parameters. The Parameters srvHost and srvPort
are for the ClientServer to know where the Server is. Param-
eters aHost and aPort are to be known to users in order to
communicate with the ClientServer. Thus, srvHost should be
equal to myHost and srvPort should be equal to myPort.
Moreover, if both the Server and ClientServer components
are to be running on the same device or box, srvHost and
aHost should be the same. The weather system component
has two parameters: host and port, values of which are equal
to aHost and aPort correspondingly, because they are proxies
for ClientSever component parameters.

US 8,010,576 B2

7

Accordingly, a simple aggregate may be formed by mul-
tiple simplest aggregates whose parameters are bounded by
constraints.

SCM and IM tasks are performed by invoking the func-
tionality described in an aggregate description 206. Aggre-
gate descriptions 206 may be specifications for functional-
ities such as provisioning, configuration, activation,
deactivation, authorization, de-installation, and cloning for
an executable 302 of an aggregate description 206. In one
embodiment, aggregate description 206 may not provide the
functionality for patching and upgrades because patching and
upgrades may be external to aggregate description 206. For
example, patching and upgrades may be introduced after an
aggregate description 206 has been implemented.

Parameter constraints may be imposed on parameters for
an aggregate description 206. The values of the constrained
parameters may have to satisty certain conditions to enable
the aggregate description 206 to perform its functionality. For
example, FIG. 6 discloses parameter constraints according to
one embodiment of the present invention. As shown, a sim-
plest aggregate A 502 and a simplest aggregate B 504 include
the parameters as discussed in FIG. 5 according to one
embodiment of the present invention.

A simple aggregate 602 may be formed from simplest
aggregate A 502 and simplest aggregate B 504. As shown, in
a constraint summary 602, constraints 604 should be that host
values should be equal (A.myHost=B.aHost). Additionally,
port values should be equal (A.myPort=B.svrPort). Further,
the host value should be equal to the host name of the system
in which the component 106 in which aggregate 404 is
installed (A.myHost=B.svrHost).

Using the above aggregates, the executables and param-
eters may be used to perform many SCM and IM tasks. Some
tasks may be provisioning, patching, and purging. A provi-
sioning task includes copying bits to a target system. The
result of the provisioning is an aggregate, which is ready to be
configured but cannot provide its functionality just yet. For
instance, a piece of software is installed but cannot be started
unless a valid serial number is supplied.

A patching aggregate includes changing bits on a target
system. The patching may be applied to results of the provi-
sioning as well as to ready to run or running aggregates. The
patches provide patches to systems according to the execut-
able parameters provided by an aggregate. The patches may
be gentle or drastic. Gentle patches are patches that may be
applied to running components 106 corresponding to aggre-
gate descriptions 206. Drastic patches may be applied to
components 106 that are not running. The result of a drastic
patch is an aggregate with a component 106 that is ready to
run.

A purging task may be removing bits from systems of
which an aggregate description 206 was installed. Results of
a purging are target systems without aggregate description
206 bits. An example of purging table is uninstalling a MS
Windows application. This usually involves removing regis-
try entries as well as erasing program(s) and libraries associ-
ated with said application from the hard drive. Those
program(s) and libraries are referred here as “bits”.

Other actions that may be performed include configura-
tion, activation, deactivation, authorization, cloning, and
upgrade tasks. A configuration task may include the initial
configuration of a component 106 for an aggregate 206. The
result of the configuration may be a component 106 that is
ready to provide the functionality of an aggregate 206.

An activation task may be starting a component 106 cor-
responding to an aggregate 206. This may be applied to con-

20

25

30

35

40

45

50

55

60

65

8

figured components 106. The result of the activation is a
running component 106, which provides the functionality of
an aggregate 206.

A deactivation task is stopping a running component 106
that was activated. The result of a deactivation is a non-
running component 106 that corresponds to an aggregate 206.

An authorization task is a modification of configuration
parameters for an aggregate 206. This may be applied to
running components 106 or non-running components 106
corresponding to the aggregate 206.

An upgrade task is a modification of configuration param-
eters for an aggregate 206 that is combined with patching.
This may be applied to components 106 that are running or
non-running.

A cloning action is a copy of an aggregate to another
component 106. It includes copying the bits and initial con-
figuration for the aggregate 206. The result of the cloning is a
new and configured component 106 that corresponds to the
aggregate 206. The cloning may not alter the component 106
on which the aggregate was applied.

Accordingly, embodiments of the present invention pro-
vide many advantages. For example, a schema is provided
that can be used to describe metadata for various components.
Even if the components have different metadata for describ-
ing attributes, the schema can be used to describe the different
metadata. Accordingly, the schema can be used to perform
inventory control and configuration management tasks for
different components that use different metadata. Thus, a
uniform way of expressing metadata is provided.

FIG. 7 is a simplified block diagram of a computer system
700 according to an embodiment of the present invention.
Embodiments of the present invention may be implemented
using computer system 700. As shown in FIG. 7, computer
system 700 includes at least one processor 702, which com-
municates with a number of peripheral devices via a bus
subsystem 704. These peripheral devices may include a stor-
age subsystem 706, comprising a memory subsystem 708 and
afile storage subsystem 710, user interface input devices 712,
user interface output devices 614, and a network interface
subsystem 716. The input and output devices allow user inter-
action with computer system 700. A user may be a human
user, a device, a process, another computer, or the like. Net-
work interface subsystem 716 provides an interface to other
computer systems and communication networks.

Bus subsystem 704 provides a mechanism for letting the
various components and subsystems of computer system 700
communicate with each other as intended. The various sub-
systems and components of computer system 700 need not be
atthe same physical location but may be distributed at various
locations within a network. Although bus subsystem 604 is
shown schematically as a single bus, alternative embodiments
of'the bus subsystem may utilize multiple busses.

User interface input devices 712 may include a remote
control, a keyboard, pointing devices, a mouse, trackball,
touchpad, a graphics tablet, a scanner, a barcode scanner, a
touchscreen incorporated into the display, audio input devices
such as voice recognition systems, microphones, and other
types of input devices. In general, use of the term “input
device” is intended to include all possible types of devices and
ways to input information using computer system 700.

User interface output devices 714 may include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem may be
a cathode ray tube (CRT), a flat-panel device such as a liquid
crystal display (LCD), a projection device, or the like. The
display subsystem may also provide non-visual display such
as via audio output devices. In general, use of the term “output

US 8,010,576 B2

9

device” is intended to include all possible types of devices and
ways to output information from computer system 600.

Storage subsystem 706 may be configured to store the
basic programming and data constructs that provide the func-
tionality of the computer system and of the present invention.
For example, according to an embodiment of the present
invention, software modules implementing the functionality
of the present invention may be stored in storage subsystem
706. For example, modules implementing the functionality of
ICCM 210 may be provided. These software modules may be
executed by processor(s) 702. In a distributed environment,
the software modules may be stored on a plurality of com-
puter systems and executed by processors of the plurality of
computer systems. Storage subsystem 706 may also provide
arepository for storing various databases that may be used by
the present invention. Storage subsystem 706 may comprise
memory subsystem 708 and file storage subsystem 710.

Memory subsystem 708 may include a number of memo-
ries including a main random access memory (RAM) 718 for
storage of instructions and data during program execution and
a read only memory (ROM) 720 in which fixed instructions
are stored. File storage subsystem 710 provides persistent
(non-volatile) storage for program and data files, and may
include a hard disk drive, a floppy disk drive along with
associated removable media, a Compact Disk Read Only
Memory (CD-ROM) drive, an optical drive, removable media
cartridges, and other like storage media. One or more of the
drives may be located at remote locations on other connected
computers.

Computer system 700 itself can be of varying types includ-
ing a personal computer, a portable computer, a workstation,
a computer terminal, a network computer, a mainframe, a
kiosk, a personal digital assistant (PDA), a communication
device such as a cell phone, or any other data processing
system. Server computers generally have more storage and
processing capacity then client systems. Due to the ever-
changing nature of computers and networks, the description
of computer system 700 depicted in FIG. 7 is intended only as
a specific example for purposes of illustrating the preferred
embodiment of the computer system. Many other configura-
tions of a computer system are possible having more or fewer
components than the computer system depicted in FIG. 7.

The present invention can be implemented in the form of
control logic in software or hardware or a combination of
both. The control logic may be stored in an information stor-
age medium as a plurality of instructions adapted to direct an
information processing device to perform a set of steps dis-
closed in embodiment of the present invention. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or methods
to implement the present invention.

The above description is illustrative but not restrictive.
Many variations of the invention will become apparent to
those skilled in the art upon review of the disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description; but instead should be
determined with reference to the pending claims along with
their full scope or equivalents.

What is claimed is:

1. A computer-implemented method for inventory control
and configuration management, the method comprising:

receiving, at an information processing device configured

to manage a plurality of software components where
each software component has a non-uniform way of
representing its metadata that configures the software
component, a textual description of a simplest aggregate
that configures a software component in the plurality of

20

25

30

35

40

45

50

55

60

65

10

software components for execution, the simplest aggre-
gate being an atomic entity aggregatable in another
aggregate and identifying at least an executable and a set
of parameters for the executable, the textual description
of the simplest aggregate expressed according to a
description schema modeling all activities handled by
the information processing device that is different from
the way the software component represents its metadata;

receiving, at the information processing device, an instance
schema for the simplest aggregate, the instance schema
describing how to form instances of the simplest aggre-
gate;

generating, with a processor associated with the informa-

tion processing device, an instance of the simplest
aggregate based on the textual description of the sim-
plest aggregate and the instance schema for the simplest
aggregate;

storing the instance in a memory associated with the first

information processing device;

determining, with the processor associated with the infor-

mation processing device, one or more values for each
parameter in the set of parameters;

storing the one or more values for each parameter in the

instance of the simplest aggregate; and

configuring the software component with the processor

associated with the information processing device based
on the instance of the simplest aggregate and metadata
for the software component that configures the software
component.

2. The method of claim 1, wherein the instance of the
simplest aggregate includes state information for the
instance.

3. The method of claim 2, wherein the state information for
the instance comprises values for parameters, results for the
performed task, or a time stamp.

4. The method of claim 1, wherein the executable describes
a functionality of the software component.

5. The method of claim 4, wherein the set of parameters are
used to perform the functionality of the software component.

6. The method of claim 1, wherein the simplest aggregate
forms part of the another aggregate in at least one of a simple
aggregate, a complex aggregate, and a simple array aggre-
gate.

7. The method of claim 1, wherein the textual description
of the simplest aggregate comprises an Extensible Markup
Language (XML) document.

8. An information storage medium having a plurality of
instructions adapted to direct an information processing
device to perform inventory control and configuration man-
agement, the information storage medium comprising:

instructions for receiving a textual description of a simplest

aggregate that configures for execution a software com-
ponent in a plurality of software components managed
by an inventory control and configuration management
module, the simplest aggregate being an atomic entity
aggregatable in another aggregate and identifying at
least an executable and a set of parameters for the
executable, the textual description of the simplest aggre-
gate expressed according to a description schema mod-
eling all activities handled by the information process-
ing device that is different from the way the software
component represents its metadata;

instructions for receiving an instance schema for the sim-

plest aggregate, the instance schema describing how to
form instances of the simplest aggregate;

US 8,010,576 B2

11

instructions for generating an instance of the simplest
aggregate based on the textual description of the sim-
plest aggregate;

instructions for determining one or more values for each

parameter in the set of parameters and storing the one or
more values for each parameter in the instance of the
simplest aggregate; and

instructions for configuring the software component based

on the instance of the simplest aggregate and metadata
for the software component that configures the software
component.

9. The information storage medium of claim 8, wherein the
instance of the simplest aggregate includes state information
for the instance.

10. The information storage medium of claim 9, wherein
the state information for the instance comprises values for
parameters, results for the performed task, or a time stamp.

11. The information storage medium of claim 8, wherein
the executable describes a functionality of the software com-
ponent.

12. The information storage medium of claim 11, wherein
the set of parameters are used to perform the functionality of
the software component.

13. The information storage medium of claim 8, wherein
the simplest aggregate forms part of the another aggregate in
at least one of a simple aggregate, a complex aggregate, and a
simple array aggregate.

14. The information storage medium of 8, wherein the
textual description of the simplest aggregate comprises an
Extensible Markup Language (XML) document.

15. A system configured to manage a plurality of software
components where each software component has a non-uni-
form way of representing its metadata that configures the
software component, the system comprising:

a processor; and

a memory in communication with the processor and con-

figured to store processor-executable instructions that

configure the processor to:

receive a textual description of a simplest aggregate that
configures a software component in the plurality of
software components for execution, the simplest
aggregate being an atomic entity aggregatable in

20

25

30

35

40

12

another aggregate and identifying at least an execut-
able and a set of parameters for the executable, the
textual description of the simplest aggregate
expressed according to a description schema model-
ing all activities handled by the information process-
ing device that is different from the way the software
component represents its metadata;

receive an instance schema for the simplest aggregate,
the instance schema describing how to form instances
of the simplest aggregate;

generate an instance of the simplest aggregate based on
the textual description of the simplest aggregate and
the instance schema for the simplest aggregate;

store the instance in the memory;

determine one or more values for each parameter in the
set of parameters;

store the one or more values for each parameter in the
instance of the simplest aggregate; and

configure the software component based on the instance
of the simplest aggregate and metadata for the soft-
ware component that configures the software compo-
nent.

16. The system of claim 15, wherein the instance of the
simplest aggregate includes state information for the
instance.

17. The system of claim 16, wherein the state information
for the instance comprises values for parameters, results for
the performed task, or a time stamp.

18. The system of claim 15, wherein the executable
describes a functionality of the software component.

19. The system of claim 18, wherein the set of parameters
are used to perform the functionality of the software compo-
nent.

20. The system of claim 15, wherein the simplest aggregate
forms part of the another aggregate in at least one of a simple
aggregate, a complex aggregate, and a simple array aggre-
gate.

21. The system of claim 15, wherein the textual description
of the simplest aggregate comprises an Extensible Markup
Language (XML) document.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,010,576 B2 Page 1 of 1
APPLICATION NO. : 11/121859

DATED : August 30, 2011

INVENTOR(S) : Nilva

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 1, line 7, after “from™ delete “co-pending”.

In column 6, line 67, delete “ClientSever” and insert -- ClientServer --, therefor.

Signed and Sealed this
Twenty-fourth Day of April, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

